Unitarity of CKM Matrix: |Vud| from neutron decay

Rajan Gupta T-2, Theoretical Division Los Alamos National Laboratory, USA

$$\begin{pmatrix} d_{w} \\ s_{w} \\ b_{w} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
Weak
states

Mass
eigenstates

matrix

LOI: Tanmoy Bhattacharya, Steven Clayton, Vincenzo Cirigliano, Rajan Gupta, Takeyasu Ito, Yong-Chull Jang, Mark Makela, Emanuele Mereghetti, Chris Morris, Santanu Mondal, Sungwoo Park, Alexander Saunders, Boram Yoon, Albert Young

Some Relevant References

- *V_{ud}*: C.-Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf, "Reduced hadronic uncertainty in the determination of *Vud*," Phys. Rev. Lett., vol. 121, p. 241804, Dec 2018. https://link.aps.org/doi/10.1103/PhysRevLett.121.241804
- *V_{ud}*: A. Czarnecki, W. J. Marciano, and A. Sirlin, "Radiative corrections to neutron and nuclear beta decays revisited," Phys. Rev. D, vol. 100, p. 073008, Oct 2019. https://link.aps.org/doi/10.1103/PhysRevD.100.073008
- *V_{ud}*: A. Czarnecki, W. J. Marciano, and A. Sirlin, "Neutron lifetime and axial coupling connection," Phys. Rev. Lett., vol. 120, p. 202002, May 2018. https://link.aps.org/doi/10.1103/PhysRevLett.120.202002
- β-decay: J. C. Hardy and I. S. Towner, "Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for *Vud* and CKM unitarity," Phys. Rev. C, vol. 91, p. 025501, Feb 2015. https://link.aps.org/doi/10.1103/PhysRevC.91.025501
- β-decay: Oscar Naviliat-Cuncic and Martin Gonzalez-Alonso, Prospects for precision measurements in nuclear β-decay in the LHC era. https://doi.org/10.1002/andp.201300072
- τ_n: R. W. Pattie, et al, "Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection," Science, vol. 360, no. 6389, pp. 627–632, 2018. https://science.sciencemag.org/content/360/6389/627
- *A:* M. A.-P. Brown, et al, "New result for the neutron β-asymmetry parameter *A*0 from UCNA," Phys. Rev. C, vol. 97, p. 035505, Mar 2018. https://link.aps.org/doi/10.1103/PhysRevC.97.035505
- RC: M. Gorchtein, "γw box inside out: Nuclear polarizabilities distort the beta decay spectrum," Phys. Rev. Lett., vol. 123, p. 042503, Jul 2019. https://link.aps.org/doi/10.1103/PhysRevLett.123.042503
- RC: Xu Feng, Mikhail Gorchtein, Lu-Chang Jin, Peng-Xiang Ma, Chien-Yeah Seng, PRL 124 (2020) 192002. https://doi.org/10.1103/PhysRevLett.124.192002

Resolving V_{ud} -SM disagreement, V_{ud} from $0^+ \rightarrow 0^+$ nuclear Versus neutron decay

$$\Delta_{CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$$

	$ V_{ud} $	$ V_{us} $	$ V_{ub} $	Δ_{CKM}
PDG 2020	0.97370(14) [from nuclear decay measurements]	0.2243(8)	$3.82(24)\times10^{-3}$	$-15.8(4.5)$ $\times 10^{-4}$

$3-\sigma$ disagreement with the Standard Model

$$|V_{ud}|^2 = \frac{5099.3(4)s}{\tau_n(1+3g_A^2)(1+RC)}$$
 Neutron Decay

 τ_N : neutron lifetime (UCN τ +)

 g_A : neutron axial charge (UCNA+)

RC: radiative corrections (Lattice QCD)

Goal: Reduce uncertainty in Δ_{CKM} from (18) to (5) in neutron decay. Neutron decay measurement is *clean* and the systematics are *independent*.

Improve neutron decay measurements to test CKM unitarity and expose possible BSM signal.

Current Goal: extract V_{ud} from neutron β -decay with fully controlled uncertainties at the $\sim 2 \times 10^{-4}$ level

V_{ud} : Key to testing $\Delta_{CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$

Current best measurement of $|V_{ud}|^2 = 0.94907(43)$ comes from superallowed $0^+ \rightarrow 0^+$ nuclear transitions

- Pure vector current transitions at tree level
- Beyond tree-level, axial current also contributes and radiative correction dominate uncertainty
- Different estimates of radiative corrections including nuclear interactions have significant impact on unitarity test, ie, Δ_{CKM} (2—4 σ)

V_{ud} from nucleon decay

Free of nuclear corrections

• Improve free neutron lifetime
$$\tau_n$$
 (UCN τ +)

• Improve
$$\lambda = \frac{g_A}{g_V}$$
 (UCNA+)

$$\delta \tau_n \approx 0.3s \rightarrow 0.1s$$

$$\frac{\delta A}{A} \approx 0.1\%$$

LANL: World's Best UCN Source Feeds Multiple Experiments

Through 3 key innovations, we can search for BSM physics beyond the reach of the LHC (>10 TeV)

- LANL is pursuing a complete measurement of V_{ud} using ultracold neutrons.
- Address the 3-sigma disagreement between current V_{ud} and SM value.

UCNA+ to improve sensitivity of UCNA by 3×

New Lattice QCD calculations will reduce theory uncertainty by 2-3x

$UCN\tau \rightarrow UCN\tau + :$ Elevator Concept for $10 \times loading$ increase

UCNT:

- World's best neutron lifetime measurement
- Only τ_n measurement with systematic correction smaller than uncertainty
- Ultimate reach is statistics limited
- Other experiments targeting 0.3sec in 5 yrs

UCNτ+:

Develop new UCN loading using elevator to increase trapped UCN by >10×

Upgrade the main UCN detector for this higher rate

UCNA \rightarrow UCNA+: Improve β -decay asymmetry by $3\times$

- World's only UCN-based neutron β-decay asymmetry experiment
- Experiment completed and published fully understood and documented systematic uncertainties.
- Final uncertainty was limited by performance of pre-upgrade UCN source.

- Upgraded UCN source performance enables 3x better reach
- Incorporate new silicon photomultiplier plastic scintillator readout
- Develop new precise calibration tools

Competition: Nab and PERC

Lattice QCD: Radiative Corrections (RC) to weak processes

LQCD calculations of radiative corrections will impact many weak processes

- Box diagram contributes only $\sim 3\%$ to decay rate but dominates uncertainty.
- The integral requires control over all virtual momenta:

low and high

(non-perturbative → lattice QCD) (perturbative → analytical)

Lattice QCD calculation of the \(\gamma W \) box diagram

$$T_{\mu\nu}(Q) = \frac{1}{2} \int d^4x \ e^{iQx} \left\langle N_f(p) \right| T \left[J_{\mu}^{em}(0,0) J_{\nu}^{WA}(\vec{x},t) \right] \left| N_i(p) \right\rangle$$

- 4-point function calculated as a function of the separation between the two space-time points (0,0) and (x,t) at which the currents are inserted
- Connected and disconnected diagrams

See Xu Feng et al. arXiv:2003.09798 → PRL 124 (2020) 192002

V_{ud} from neutron decay:

An opportunity to search for BSM physics

 V_{ud} from neutron decay (no systematics due to nuclear corrections) requires

- $UCN\tau \rightarrow UCN\tau + \rightarrow Next Gen$
- UCNA \rightarrow UCNA+ \rightarrow Next Gen
- Radiative Corrections: lattice QCD and effective field theory.

All three efforts are underway at LANL to resolve the V_{ud} – SM discrepancy.

Synergistic calculations

- 1) γW box diagram for Kaon decay for $|V_{us}|$
- 2) Semi leptonic form factors